Hydrodynamics of a biologically inspired tandem flapping foil configuration
نویسندگان
چکیده
Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal–tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.
منابع مشابه
Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
Propulsion and maneuvering underwater by flapping foil motion, optimized through years of evolution, is ubiquitous in nature, yet marine propulsors inspired by examples of highly maneuverable marine life or aquatic birds are not widely implemented in engineering. Performance data from flapping foils, moving in a rolling and pitching motion, are presented at high Reynolds numbers, Re=Uc/nu, or O...
متن کاملBiologically inspired force enhancement for maritime propulsion and maneuvering
The move to high performance applications greatly increases the demand to produce large instantaneous fluid forces for high-speed maneuvering and improved power efficiency for sustained propulsion. Animals achieve remarkable feats of maneuvering and efficiency by changing their body shape to generate unsteady fluid forces. Inspired by this, we have studied a range of immersed bodies which drast...
متن کاملA Biologically Inspired Computational Study of Flow Past Tandem Flapping Foils
Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal-tail fin interaction observed in a live bluegill sunfish by Drucker & Lauder using Particle Image Velocimetry (PIV). The simulations have been carried out using a Cartesian grid ...
متن کاملHydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion
This thesis investigates the hydrodynamic effects of biologically-inspired leading-edge tubercles. Two complementary studies examine the performance of three-dimensional hydrofoils based on the pectoral flippers of the Humpback Whale (novangilae megaptera). The first study uses a static foil, with application to conventional control surfaces– such as rudders or dive planes–found on marine vehic...
متن کاملComputational Analysis of 3d Fin-fin Interaction in Fish’s Steady Swimming
Three-dimensional numerical simulations are used to investigate the hydrodynamic performance and the wake patterns of a sunfish in steady swimming. Immersed boundary method for deformable attaching bodies (IBM-DAB) are used to handle complex moving boundaries of one solid body (fish body) attached with several membranes (fins). The effects of the vortices shed from both the dorsal and anal fins...
متن کامل